[오일러프로젝트] 39번문제
세 변의 길이가 모두 자연수 {a, b, c}인 직각삼각형의 둘레를 p 로 둘 때, p = 120 을 만족하는 직각삼각형은 아래와 같이 세 개가 있습니다. {20, 48, 52}, {24, 45, 51}, {30, 40, 50}1000 이하의 둘레 p에 대해서, 직각삼각형이 가장 많이 만들어지는 p의 값은 얼마입니까? 평범한 문제. 직각 삼각형 나오면 일단 피타고라스의 정리.. 다만, a,b,c사이의 관계에 따라서 조건을 좀 더 줄여 줄 수 있을 것 같지만 그냥 각각 1~1000까지 loop돌면서 모든 case에 대해 brute-force 로직 적용. Python Ruby Perl
더보기
[오일러프로젝트] 12번문제
1부터 n까지의 자연수를 차례로 더하여 구해진 값을 삼각수라고 합니다. 예를 들어 7번째 삼각수는 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28이 됩니다. 이런 식으로 삼각수를 구해 나가면 다음과 같습니다. 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... 이 삼각수들의 약수를 구해봅시다. 1: 1 3: 1, 3 6: 1, 2, 3, 6 10: 1, 2, 5, 10 15: 1, 3, 5, 15 21: 1, 3, 7, 21 28: 1, 2, 4, 7, 14, 28 위에서 보듯이, 5개 이상의 약수를 갖는 첫번째 삼각수는 28입니다. 그러면 500개 이상의 약수를 갖는 가장 작은 삼각수는 얼마입니까? 소인수의 개수와 약수의 개수를 헷갈려서 맥북 이륙 좀 시키다가 이상하다 싶어..
더보기